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Motivation: The 3D-to-2D problem

2D source

3D source

Field data:
point source

↔ Synthetics:
line source

1 Auer, Ludwig Asymptotic 3D-to-2D data transformation in FWI



Introduction
Asymptotic data transformation

Complex frequency 2.5D modelling
Summary and conclusions

Outline and thesis objectives

1 Introduction: Line source and point source characteristics

2 Assessment of the validity of 3D-to-2D data transformation

3 An approach to frequency domain 2.5-D modelling

4 Summary and conclusions

2 Auer, Ludwig Asymptotic 3D-to-2D data transformation in FWI



Introduction
Asymptotic data transformation

Complex frequency 2.5D modelling
Summary and conclusions

Amplitude decay behaviour
3D/2D Amplitude decay behaviour

Di�erences between 3-D and 2-D wave propagation

Di�erences in amplitude decay behaviour

Point source spreads energy over surface of a sphere
→ 3D amplitudes scale with 1/r

Line source spreads energy over surface of a cylinder
→ 2D amplitudes scale with 1/
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Amplitude decay behaviour
3D/2D Amplitude decay behaviour

Di�erences between 3-D and 2-D wave propagation

Di�erences in wavelet shape and spectral properties

2D and 3D homogeneous fullspace solutions plotted over f TD responses
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2D Green's function scales with frequency

Solutions phase shifted by π/4 in the far �eld

2D wavelet is asymmetric and has a "long tail"
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Theory and limitations
Numerical �lter appraisal

Theory and limitations of asymptotic �ltering
Bleistein's �lter in the time and the frequency domain

Filter is derived by forming the ratio Ḡ 2D/Ḡ 3D between
the 3D and the asymptotic 2D Green's function.

Ḡ 2D(ω) = Ḡ 3D(ω) · exp
(
iπ
4

)√
2πσ

|ω|

G 2D(t)≈
√
t ·
[

1√
t
∗G 3D(t)

]

with σhomog = cr = c2t and σgeneral =
∫
s c(s)ds → Raytracing!

One individual scaling factor σ for each arrival!
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Theory and limitations of asymptotic �ltering
Fundamental and practical limitations

Critical issues

Asymptotic approximation breaks down in the near �eld

Amplitude adjustment is done in a time-sample manner

Ray paths are curved when the velocity is a funct. of space

Ray approach is inadequate for overlapping/interfering events
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Theory and limitations
Numerical �lter appraisal

Numerical evaluation of asymptotic �lter procedures
Testing environment

Testing procedure

1 Establish 2D models of varying degrees of complexity

2 Set up 3D models by repeating 2D models along the y-axis

3 Compute 2D and 3D synthetics with a viscoelastic FDTD code

4 Compare true 2D and �ltered 3D data in the TD and the FD

Main �nding: Filter ...

... works well in acoustic media like models
with blocky or stochastic anomalies
... fails in elastic media when interference
between P and S waves occurs
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Example I: Acoustic fullspace with a velocity gradient
Model layout and synthetic seismic gather

Acoustic constant-density fullspace with a velocity gradient

Distance [m]

D
e
p
th

[m
]

Vp [km
s
]

SRC

1 1.5 2 2.5 3

0 50 100 150 200 250 300
0

50

100

150

200

Distance [m]

Ti
m
e
[m

s]

100 120 140 160 180 200 220 240
100

150

200

250

300

Distance [m]

Ti
m
e
[m

s]

100 120 140 160 180 200 220 240
100

150

200

250

300

Distance [m]

Ti
m
e
[m

s]
100 120 140 160 180 200 220 240

100

150

200

250

300

2D synthetic seismogram
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Theory and limitations
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Example I: Acoustic fullspace with a velocity gradient
Sample trace in a distance of 150 m

Sample trace at a distance of 150 m (time domain)
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2nd arrival undercorrected by ∼ 30 %

Mean RMS error ∼ 1.2 %

Error accentuated where overlap occurs
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Example II: Acoustic fullspace with stochastic �uctuations
Model layout and synthetic seismic gather
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Example II: Acoustic fullspace with stochastic �uctuations
Sample trace at a depth of 74 m

Sample trace at a depth of 74 m (time domain)
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Filter performs surprisingly well!

Max. relative time domain error ∼ 2.0 %

Mean RMS error ∼ 0.3 %
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Example III: Elastic fullspace with block anomalies
Numerical appraisal of asymptotic �ltering
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Example III: Elastic fullspace with block anomalies
Numerical appraisal of asymptotic �ltering
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Example III: Elastic fullspace with block anomalies
Numerical appraisal of asymptotic �ltering

Sample trace at a depth of 104 m
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Introduction to 2.5D modelling

Basic concept of 2.5-D modelling

Based on a spatial Fourier transform of the 3D wave equation
along the y-axis and solving it for Nky wavenumbers

Reduces memory requirements by breaking down the 3D
problem to many 2D problems

Can be performed in the time-wavenumber domain or in the
frequency-wavenumber domain

Reduce Nky to save computation time!
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Wavenumber sampling issues in FD 2.5D modelling

Degree of oscillation in ky spectra increases with wavenumber
value, SRC-REC distance and frequency

Singularities or "poles" near certain critical wavenumber
values complicate sampling

SRC ↔ REC
= 20 m

SRC ↔ REC
= 100 m

Wavenumber spectra
f = 150 Hz, Nky = 256

nky = 64 nky = 256

Wavenumber [ky] Wavenumber [ky]
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Note

ky -aliasing or samp-
ling close to a pole
degrades FD solution
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Mitigating the singularity problem with complex frequencies

By introducing complex angular frequencies (i.e. ω = ωr + iωi )
poles are "removed" from the ky integration path

Is equivalent to introducing time damping. Multiplying with
exp(ωi t) makes synthetics comparable to �eld data

SRC ↔ REC
= 20 m

SRC ↔ REC
= 100 m

Wavenumber spectra
f = 150 Hz, Nky = 256
Without CF: ωi = 0

nky = 64 nky = 256

Wavenumber [ky] Wavenumber [ky]
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Wavenumber spectra
f = 150 Hz, Nky = 256

With CF: ωi = 10

nky = 64 nky =256
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Introduction to 2.5D modelling
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2.5D FDFEM modelling with complex frequencies

2.5D complex frequency FEM modelling with complex

frequencies: Procedure

1 Combined an acoustic FDFEM 2.5D forward solver with
a complex frequency extension

2 Fixed the parameters ωi at 10 and Nky at 256

3 Performed 2.5D forward modelling on di�erent acoustic
models for a range of frequencies

4 Compared FEM 2.5D and FDM 3D data in time domain
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Numerical example: Acoustic fullspace with block anomalies
Wavenumber spectra before and after introducing complex frequencies

Acoustic block model, frequency f = 150 Hz

SRC ↔ REC
= 20 m

SRC ↔ REC
= 100 m

w/o complex freq. with complex freq.
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Oscillations much better captured when
frequency is made complex!
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Numerical example: Acoustic fullspace with block anomalies
Sample trace 45: Comparison of CF 2.5D modelling and Asymptotic �ltering

CF 2.5D modelling Asymptotic �ltering
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beats �ltering in
terms of errors!
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Summary and conclusions

1 Asymptotic �ltering

Asymptotic data transformation is suitable as long as the
acoustic approximation is met
Acoustic full waveform inversions on 2D and �ltered 3D
indicate only marginal di�erences in the reconstructed model
An alternative to �ltering is needed when a signi�cant shear
component is present and rays are strongly curved

2 2.5D modelling

Complex frequencies stabilize wavenumber sampling and allows
to reduce No. of ky -samples by a factor of 10.
FEM 2.5D results compare very well to FDM 3D synthetics
Critical usefulness of CF 2.5D modelling expected in the elastic
case

21 Auer, Ludwig Asymptotic 3D-to-2D data transformation in FWI



Appendix

For Further Reading I

A., Fichtner.
Full Seismic Waveform Modelling and Inversion.
Springer, 2010.

N., Bleistein.
Two-and-One-Half Dimensional In-Plane Wave Propagation.
Geophysical Prospecting. 34:686�703, 1986.

S., Cao and S. A., Greenhalgh.
2.5-D Acoustic Wave Modelling in the Frequency-wavenumber
Domain.
Exploration Geophysics. 28:11�15, 1997.

22 Auer, Ludwig Asymptotic 3D-to-2D data transformation in FWI



Appendix

For Further Reading II

C. Sinclair., S. A., Greenhalgh and B., Zhou
Wavenumber Sampling Issues in 2.5D Frequency Domain
Seismic Modelling.
Pure and Applied Geophysics.: 2011.

J., Miksat, T.M., Müller and F., Wenzel.
Simulating three-dimensional seismograms in 2.5-dimensional
structures by combining two-dimensional �nite-di�erence
modelling and ray tracing.
Geophysical Journal International. 174:309�315, 2008.

P. R., Williamson and R. G., Pratt.
A critical review of acoustic wave modeling procedures in 2.5
dimensions.
Geophysics. 60:591�595, 1995.

23 Auer, Ludwig Asymptotic 3D-to-2D data transformation in FWI



Appendix

2D acoustic test-inversion of 2D and �ltered 3D data

FD inversion using 9 frequencies b/w 20 and 260 Hz and 80 its.

(a) Inversion of �ltered 3D data
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(b) Inversion of 2D data
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Appendix

Summary of �lter performance appraisal

Summary of �lter performance appraisal
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Appendix

Di�erences between 3D and 2D wave propagation

Di�erences in frequency-domain (FD): Green's function
solutions for a homogeneous acoustic fullspace

3D Green's function in FD

Ḡ 3D(r,ω) = 1
4πr

exp (iωr/c)

2D Green's function in FD

Ḡ 2D(r,ω) = i
4H

(1)
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Frequency [Hz]

R
e
la
ti
v
e
a
m
p
lit
u
d
e 2D

3D

50 100 150 200 250

-0.5

0

0.5

1

26 Auer, Ludwig Asymptotic 3D-to-2D data transformation in FWI



Appendix

Di�erences between 3D and 2D wave propagation

Di�erences in frequency-domain (FD): Green's function
solutions for a homogeneous acoustic fullspace

3D Green's function in FD

Ḡ 3D(r,ω) = 1
4πr

exp (iωr/c)

Asymptotic 2D GF in FD

≈ 1
2
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Appendix

Di�erences between 3D and 2D wave propagation

Di�erences in time-domain (TD): Green's function
solutions for a homogeneous acoustic fullspace

3D Green's function in TD

G 3D(r, t) = δ(t−t0−r/c)
4πr

2D Green's function in TD

G 2D(r, t) = H(t−t0−r/c)
2π

√
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Appendix

Example I: Layered acoustic fullspace
Model layout and synthetic seismic gather

Acoustic constant-density fullspace with 1D layering
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Appendix

Example I: Layered acoustic fullspace
Sample trace: Comparison of �lter implementations

Filtering in combination with raytracing
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Appendix

Example I: Layered acoustic fullspace
Sample trace: Comparison of �lter implementations

Straight-ray approximate time-domain �ltering
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Appendix

In�uence on the frequency domain solution

Wavenumber spectra
f = 150 Hz, Nky = 256
Without CF: ωi = 0

nky = 64 nky = 256

Wavenumber [ky] Wavenumber [ky]
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Frequency domain 2.5D (magenta) and 3D (blue) solutions
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→Discrepancies between 2.5-D and 3D can be observed!
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In�uence on the frequency domain solution

Wavenumber spectra
f = 150 Hz, Nky = 256

With CF: ωi = 10

nky = 64 nky =256
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Frequency domain 2.5D (magenta) and 3D (blue) solutions
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3D GF with ωi = 10

2.5-D GF with ωi = 10
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→Discrepancies between 2.5-D and 3D removed!
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Appendix

Origin of poles illustrated on acoustic GF's

Acoustic 2.5D fullspace solution G̃ 2.5D(ky ,r,ω) =
− 1

4

[
J0

(
r

√
ω2

c2
−k2y

)
− iY0

(
r

√
ω2

c2
−k2y

)]
,ky <

ω

c

1

2π
K0

(
r

√
k2y − ω2

c2

)
,ky >

ω

c

Nky = 256

nky = 64 nky = 256

Wavenumber [ky] Wavenumber [ky]
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0.2 0.4 0.60.2 0.4 0.6

0.2 0.4 0.60.2 0.4 0.6

-0.025

0
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-0.1

0

0.1

-0.5

0

0.5

When w/c = ky the
squareroot becomes 0

Y0 and J0 get singular when
their argument is 0

For c = 1500 m/s and
f = 150 Hz a singularity is
present at 0.6283
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Appendix

Origin of poles illustrated on acoustic GF's

Acoustic 2.5D fullspace solution G̃ 2.5D(ky ,r,ω) =
− 1

4

[
J0

(
r

√
ω2

c2
−k2y

)
− iY0

(
r

√
ω2

c2
−k2y

)]
,ky <

ω

c

1

2π
K0

(
r

√
k2y − ω2

c2

)
,ky >

ω

c

Nky = 256

nky = 64 nky = 256

Wavenumber [ky] Wavenumber [ky]

0.2 0.4 0.60.2 0.4 0.6
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In complex media multiple poles
contaminate the spectra and
exacerbate wavenumber sampling!
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