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(1) Introduction: Tomography approach
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Compromise “full”-waveform tomography and ray 

theory, jointly model global and regional structure?

Multi resolution models? 
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● Isotropic tomographic 

models correlate well 

for the SH harmonic 

degrees

● Model consistency 

validates modeling 

algorithms
ETH vs. Harvard
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Isotropic (deg  20)<

Anisotropic (deg  5)<

● Models still lack 

consistency at short 

spatial wavelength

● For Geodynamically 

relevant parameter-

izations situation is 

even worse

● E.g. anisotropy ...

~1000 km structure

~8000 km structure
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Whole-mantle anisotropy from surface and body waves at 

adaptive resolution  (Auer et al. 2014)

Thermal structure, anisotropy, and dynamics of oceanic 

boundary layers (Auer et al. 2015)

Joint inversion of P- and S-wave constraints, hydration of 

marginal basins (Tesoniero et al. 2015)

Hybrid full waveform tomography combining global and regional 

data (Auer et al. 2016, in preparation)

2. 

3.

4.

5.

(1) Introduction: Thesis outline

Chap.
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Voxel discretization

● Multi-scale

● Orthogonal

● Simple
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Teleseismic body wave 

traveltimes
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ScS3,SKS,SKKS

Published cross-correlations

Around major S-wave phases
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Transversely isotropy 

parameterization 
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> 1
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horizontal flow

vertical flow

In case of simple A-type 

olivine lattice preferred 

orientation (LPO):
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= *

Regularization terms

dc
global

dT
global
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(0.5 mio)

dln(v
S
)

 

Global SW

Global BW

Up to 150k degrees of freedom
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(2) Whole-mantle anisotropy

Solution of the inverse problem: d=Gm

Using a tailored parallel solver based on PETSc

available @ https://github.com/auerl/petscinv
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We solve the normal equations ... 
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Savani: a new,

global, adaptive

resolution model

of radial shear-

wave anisotropy 

Auer et al. (2014)
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Key features of savani
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1)   Variable, adaptive-resolution          2)    Radial anisotropy in the

                                                                              entire mantle
2

Download @ http://n.ethz.ch/~auerl 

3)     Extreme data diversity:

         Numerous previously 

         published datasets 
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What is the ξ anomaly and how does it 

relate to upper-mantle dynamics?
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This study:

Half-space 

Cooling (HSC)!
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Reference v
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 against sea-floor

ages of the Pacific Ocean

● Oceanic lithosphere agrees broadly with 

half-space cooling, LAB~1200°

● But: anomaly in the Pacific at sea-floor 

ages of~ 80 million years

● Complexity beyond half-space cooling
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Anisotropy too deep+age-dependent!

Radial anisotropy comparsion (this study) Azimuthal anisotropy, Becker et al. (2015)

Tomographic and geodynamic 

fast axes directions match underneath

the 1200 C isotherm! °

Fast axes comparison

ξ too deep and not flat!
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Part 1: Model comparison (isotropic)(3) Age dependence, anisotropic

Flat ξ artifact of penalizing model roughness?

Idea: Circumvent regularization by conducting

“probabilistic” hypothesis tests  → solve forward 

problem for conceptual geodynamic models of ξ

and monitor data fit

Are flat or age-dependent models preferred?
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Fit (VR) for 

Pacific dataset:

Depth of anisotropy
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Again: LPO anisotropy too deep 



  

Grid search over age-slope, 

c, and flattening age, T
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● Regionalized hypothesis tests confirm 

that depth of zone is shallower than 

LPO prection.

● Some age-dependent models borderline 

compatible with data, but there is 

preference for flat models.

(3) Hypothesis test: summary
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Isotropic structure broadly matches HSC
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● G is probably not the LAB, but rather a mid-lithospheric 

discontinuity, as seen under continents

● Radial anisotropy sees frozen-in (100Ma-1Ga) structure 

(petrofabrics, melt lamellae) + contributions from 

asthenospheric LPO

● Azimuthal anisotropy dominated LPO from recent (0-100 

Ma) mantle flow, marks the “mechanical LAB”
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Up to 250k degrees of freedom

(4) Compositional tomography

Summary of results

Key points

● SPani: joint model of vP 

and vS variations in the 

Earth's mantle

● Anomalous vP/vS ratios at 

marginal basins

● Might be related to 

hydration 
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Scaling:



  

(5) Hybrid waveform tomography

Motivation: Using regional waves?

● Resolution of tele-    

seismic P-waves is 

limited, especially in     

the transition zone

● Can we use new 

datatypes such as 

regional body waves to 

overcome this problem? 
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(5) Hybrid waveform tomography

Motivation: Using regional waves?

 … triplicated P-waves?
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● Cannot be modeled 

 with ray theory

● Δ = 14 – 32°

● Resolution of tele-    

seismic P-waves is 

limited, especially in     

the transition zone

● Can we use new 

datatypes such as 

regional body waves to 

overcome this problem? 



  

(5) Hybrid waveform tomography

Motivation: Using regional waves?

Yes! Cf. Staähler et al. (2012)

25/33

1. Introduction    2. Mantle anisotropy    3. Upper mantle    4. Composition    5. Hybrid tomography    6. Conclusions 

● Resolution of tele-    

seismic P-waves is 

limited, especially in     

the transition zone

● Can we use new 

datatypes such as 

regional body waves to 

overcome this problem? 



  

(5) Hybrid waveform tomography

Summary of the inverse problem
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Cannot use ray theory for new data  AxiSEM→

Interaction b/w 1D forward and backward wavefields



  

(5) Hybrid waveform tomography

Summary of the inverse problem
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(5) Hybrid waveform tomography

MCkernel: Kernel quadrature

Monte-Carlo integration 

approach, implemented

in Fortran 2008 and MPI

Supports tetrahedral

and voxel meshes

Available for download @
https://github.com/sstaehler/mckernel
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(5) Hybrid waveform tomography

Prediction quality of kernels
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Compute  d = Gm for kernel and tomographic model



  

(5) Hybrid waveform tomography

Prediction quality of kernels
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(5) Hybrid waveform tomography

Prediction quality of kernels

● Compute SPECFEM synthetics for tomographic model 
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(5) Hybrid waveform tomography

Prediction quality of kernels

● Compute SPECFEM synthetics for tomographic model 

● Measure cross-correlation traveltimes for synthetics 

● Compare predicted and measured traveltimes
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(5) Hybrid waveform tomography

Prediction quality of kernels

30/33

1. Introduction    2. Mantle anisotropy    3. Upper mantle    4. Composition    5. Hybrid tomography    6. Conclusions 



  

W
it

h
 r

eg
io

n
al

 d
at

a

(5) Hybrid waveform tomography

Preliminary model Spani+EU (WIP)
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Conclusions

● Savani, a model of global whole-mantle radial anisotropy 

available for download
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Thank you! 

(Apero at 19:00 in J Floor)



  

Backup slides
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Melt mobility 
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LPO (1)

● LPO = Lattice preferred orientation

● Mainly due to dislocation glide (slip) along certain 

preferred glide plains and associated internal 

rotation/alignment of mineral grains

● To a first order, seismic anisotropy closely linked to the 

direction of shear or kinematic deformation
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LPO (2)

● Olivine shows a strong single-crystal elastic anisotropy. Fastest P- and S-wave 

velocities parallel to [100] crystallographic axis

● 70ties: Experimental studies on olivine indicated [100] axes of crystals to be nearly 

 to flow direction and (010) plane  to flow plane.|| ||
● Analysis of naturally deformed peridotite  [100](010) crystallographic axis of →

grains often coincide with rock lineation

● MCM + VPSC modelling + simple model of LPO development. Works  well   in 

case of large length scales and simple dynamics (e.g. Tommasi 1998, Becker 2006)

Xi > 1 = horizontal flow        Xi < 1 = vertical flow
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LPO (3)

● New findings in past ~10 years 

suggest that it's more difficult

● LPO type is sensitive to  water, 

stress, temperature, pressure, 

melting (  Carmen's work )→
● Way of interpretation of seismic 

anisotropy needs  major 

modifications!

A-type: Lithosphere, low water content

E-type: Astenhosphere, higher water conent
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LPO (4)

A & E type most abundant



  

LPO (5)

Dominant slip systems in

Various types of olivine LPO

<
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SKS splitting (1)

● Vertically incident s-wave, transversing an anisotropic medium

● Polarization removed by transversing the liquid core

● Initial polarization of SKS is in plane of propagation (vertical)

● Splits in fast and slow polarized shear wave

● One can measure the fast axis, the delay time and the splitting angle

● Can be done on S, ScS, SS, PKS, but most  popular are SKS and SKKS. 

● Differnetial splitting of SKS-SKKS to infer lowermost mantle anisotropy
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SKS splitting (2)

Becker (2011)

2  ψ azimuthal anisotropy fast axes well reconciled by

spatially averaged global shear wave splitting



  

SKS splitting (2)

Becker (2011)
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Favier & Chevrot (2003)

2D kernels in heterogeneous 

models, adjoint method

3D kernels in 3D

models, Specfem,

adjoint method

Sieminski (2008)

Long (2008)

Analytical kernels,

following the formalism 

of Dahlen (2000)

In the finite-frequency sense 

splitting has also vertical resolution



  

Regional datasets / Mermaids

Becker (2011)
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USarray Alparray
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Lower-mantle anisotropy (1)



  1. Introduction    2. Mantle anisotropy    3. Upper mantle    4. Composition    5. Hybrid tomography    6. Conclusions 

Lower-mantle anisotropy (2)

Required by the data?
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Lower-mantle anisotropy (3)

Summary of LM observations
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Lower-mantle anisotropy (2)
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Fossil (frozen-in) anisotropy

vs. asthenospheric flow

● Paleo-spreading model 

match confined to shallow 

regions

● Define a mechanical 

Lithosphereasthenosphere

“boundary” based on 

transition
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● Blue: oceanic correlation 

for 50-350 km

● Black: global correlation 

for 50-350 km

 → differently 

parameterized 

geodynamic models

Fit for different LPO models

Azimuthal and radial 



  1. Introduction    2. Mantle anisotropy    3. Upper mantle    4. Composition    5. Hybrid tomography    6. Conclusions 

Azimuthal anisotropy (1)

Smith & Dahlen  (1973) and Montagner & Nataf (1986) show that

perturbations of surface wave phase velocities in media with weak

hexagonal anisotropy is given by

Medium with a single fast or slow symmetry axis and isotropic velocities in 

the plane perpendicular to it.

Special cases: Azimuthal anisotropy (2  and 4  terms)ψ ψ

                        Radial anisotropy (0  terms)ψ

                 No 1  and 3  terms ψ ψ

Coefficients in D depend on 13 independent elastic constants
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Azimuthal anisotropy (2)
From 21 to 13 independent elastic parameters, of which we resolve only a couple at once

Azimuthal: 3 (Vs, Gs, Gc), horizontal symmetry, Radial: 2 (Vs, Xi) vertical symmetry

Vectorial tomography: 4 (Vs, Xi, two angles of orientation of symmetry axis). 
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Azimuthal anisotropy (3)

Montagner & Nataf (1986) show that 

A,C,L,N,F kernels are Equivalent to the 

aszimuthal anisotropic kernels
We can derive The fast axis direction

and the Amplitude of azimuthal anisotropy
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Linearity of CC delay times (1)



  

Regularization options

●  Minimum norm model

  • Smoothest model

  • Fewest wavelets

Normalized Image Roughness

ROUGH

SMOOTH



  

LPO model of Becker (2008)
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LPO model of Becker (2008)
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1)

Born theory

A wavefront heals because energy 

Diffracts around the anomaly, making 

anomaly hard to detect

2)

In the first-order Born approximation

this is modeled via single scattering

3)

Considering cross-correlation delay times:

Scattered wave perturbs delay time

4)

Line integrals

Turn into volume integrals

Can also use Adjoint method
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Rays vs. finite-frequency kernels

Does replacing 0-th with 1st order (single scattering) theory play a role, globally?

Data coverage is much more of a problem. But regionally, it makes a difference!

 

Ray theory

FF-theory
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 → Ray theory where sufficient, FF-theory, where required!
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Linearity of CC delay times (1)

Quality of kernel linearity
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Linearity of CC delay times (2)
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Old results: Model of Beghein (2014)
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Old results: Ekstroöm (1998)

Isotropic cross-section

Anisotropic cross-section

Radial anisotropy in the Central Pacific

“Pancake” like structure of

Above average xi with a

Peak at ~ 150 km depth
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Old results: Beghein (2015)
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Old results: Burgos (2014)
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SS precursor modeling, Schmerr (2012)

Which of them are compatible with our model?
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SS precursors, Receiver functions

Look at time difference

With converted waves

Look at SS precursors

reflected at interfaces
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Recent approaches to global modeling

Adjoint (Bozdag, 2012)

300 Eqs
Tmin = 30s

CEM (Afanasiev et al. 2015) SAVANI (Auer et al., 2014)

Global adjoint tomography

T 30 s, 300 EQ's, 1 it.<

Method agnostic composite

model from regional waveform

tomographys and S20RTS

Compilation of multiple

Global datasets, reinversion;

Next: add regional data
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Adjoint vs. classical tomography
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Adjoint vs. classical tomography

Classical tomography Adjoint tomography

We can accumulate the full

approximate Hessian

In the framework of non-linear

optimization theory one would call

it a “Gauss-Newton type” method

The approximate nature of our

forward theory restricts ourselves

to 1D reference models, thus we

can only do 1 inversion step

 

One is restricted to compute so called 

“Event Kernels” i.e. a sum of misfit Kernels

Computing individual kernels for all 

different event station pairs would be 

to expensive

Would theoretically work with every 

available wiggle in the record but in 

practice people employ more robust 

misfit functionals (e.g. traveltimes)

Limited to rather low frequency

and small domains

Focuses on the background model
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Kernel expressions
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“Bayesian” generalized non-linear 

least-squares inversion (vs. discrete regularization)

Assume: a posteriori model parameters are distributed according to a Gaussian PDF 

●  To solve slightly non-linear problems,

     this algorithm can be iterated

●  Provides a formalized way to introduce 

    prior knowledge 

For a linear problem the solution is given by (Tarantola & Valette, 1982)

Compare to “Classic” formulation:

Solving the linear system 

LSQR
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Computational aspects (petscinv)

SPQLSR vs. PETSc (KSP-LSQR)

Tested our code on

system matrices up to

around 200 GB, takes

around 10 hrs for one

point in the L-curve on

12 Cores 3.45 GHz 

shared memory node  

Tomography solver from Univ. of Wyoming
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Computational aspects (MCkernel)

Strong scaling test, fixed problem size:

● 587 SRC-REC pairs

● 4 period bands from 10 – 30 s

● Triangular mesh with n=7260
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AxiSEM, basic principle

1D models  one can use →

properties arising from 

axial symmetry (where 

source is located on a axis 

through the center of the 

earth) to decompose 

moment tensor sources in 

a series of multipole 

sources that can be solved 

on a 2D disk.

3D wavefields 

reconstructed from 2D 

solutions viat

Analytical relations

  → Global 1D 

     wavefields 

     up to 2 Hz
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HSC comparsion (1)

Half-space cooling works fine, but not at  ~80 Ma>

Reference against sea-floor age, combine with a thermal 

Reference model, and vS-to-T scaling relationship
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HSC comparsion (1)
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HSC comparsion (1)
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HSC comparsion (1)



  1. Introduction    2. Mantle anisotropy    3. Upper mantle    4. Composition    5. Hybrid tomography    6. Conclusions 

HSC comparsion (1)



  1. Introduction    2. Mantle anisotropy    3. Upper mantle    4. Composition    5. Hybrid tomography    6. Conclusions 

SH cross-model comparsions
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Model power, comparison
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CRUST2.0 vs CRUST1.0
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Azimuthal anisotropy correction
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Checkerboard tests (Savani)

d = Am;       m† = A†d = A†A m = R m
R   describes how the “real” Earth   m   is project   

            into the tomographic model   m†  
(Menke, 1989)
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Leakage tests (Savani)
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Ray hitcounts (SPani)
P                                 PP                              PPP                             pP
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Tomographic filtering (SPani)
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Leakage test (SPani)
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Leakage test (SPani)
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L-curve analysis (SPani)

Rayleigh + P have sensitivity
For P-wave structure, but not
Enough to resolve it.

We “help” the inversion to 
converge to a geological 
plausible model

Need to find a balance 
between perfect scaling 
(leading poor data fit) but not 
to hide contribution from P-
waves in the regions where 
we have large sensitivity 
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SPani test (without scaling constraints)
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SPani (with scaling constraints)
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SPani (with scaling constraints)

Partial melting occuring in the 

subducting slab creates a volcanic 

arc. The stetching of the crust 

caused by the upwelling of molten 

magma creates a basin behind the 

volcanic chain (e.g. Japan sea,

Philippine sea)

Water transported down via the subducted slab, enables partial melting and

the creation of a magmatic. Probably not degassed entirely, since we find a lot of 

Serpentinized sea mountains (only forms if water present). Water trapped 

inside the mantle in the form of hydrous minerals? Fast eastward retreatment  lowered→

Viscosity?  small scale convection?→
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SPani + scaled model: 

datafit
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A statistical condundrum

We assume normally distributed errors, define

And accept models with                   we now 

take an acceptable model,  and remove one 

anomaly (e.g. the Tahiti plume): Small en-

ough that Chi squared remains acceptable!

Does this mean Tahiti is not resolved?
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A statistical condundrum

We assume normally distributed errors, define

And accept models with                   we now 

take an acceptable model,  and remove one 

anomaly (e.g. the Tahiti plume): Small en-

ough that Chi squared remains acceptable!

Does this mean Tahiti is not resolved?

Could be done for any anomaly! Nothing resolved? 

However there are subsets of the data, that violate 

the criterion (e.g. the station under Tahiti)

 → Create subset criterion, regionalized datasets!
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Measuring CC traveltimes

Frequency response

Constant fractional bandwidth



  

Measuring phase anomalies

→ Compare seismogram with its reference synthetic in a waveform fitting  procedure, 
that involves phase- and amplitude matching procedure in different frequencies

Dispersion properties of 
1D medium iteratively 
modified until synthetic
fits measured waveform
 

Using ray theory on a sphere (e.g. Tromp & Dahlen, 1993) we can write surface
wave displacement, for a reference earth, as a function of frequency as

The observed surface wave displacement, is given as a perturbation to the reference

Path averaged phase 
anomalies (“travel-times”,
“apparent phase vel.”)

Source Phase/Receiver Phase/Propagation Phase
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Phase slowness p is expanded 
in some basis functions, e.g.: splines
Pixels, Spherical Harmonics, or ...

Ki can be freqency dependent 
frechet derivatives or 1D-sens-
Itivity functions

Phase anomaly is related to local slowness perturbation via

Slowness perturbation is related to structure

2 options: Inversion can be done using a 3D parameterization in one step or via the
detour of first making 2D phase velocity “maps” or regionalized dispersion curves

Phase anomaly  2D phase velocity maps→
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Savani: modeling details (1)
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Savani: modeling details (2)
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Sensitivity (2)



  1. Introduction    2. Mantle anisotropy    3. Upper mantle    4. Composition    5. Hybrid tomography    6. Conclusions 

Sensitivity (1)
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RMS comparsion
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● Global mantle convection 

embraces multiple, coupled 

scales 

● Convection models optimally 

account for them (see, e.g. 

Burstedde et al. 2013)

● Tomography models also 

should reflect multiple scales



  

(1) Introduction: Tomography approach

Geodynamically relevant parameters
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Anisotropy, e.g. Composition, e.g.
2

● Provides a more direct link  

to mantle kinematics 

● Common to assume 

azimuthal anisotropy or 

radial anisotropy

● Provides a more direct link   

to mantle composition

● Can be inferred through 

ratios of shear and 

compressional wave-     

speeds



  

(1) Introduction: Tomography approach

Summary of the inverse problem
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= *

Regularization terms

dc
global

dT
global

(10 mio)

(0.5 mio)

dln(v
S
)

 

Global SW

Global BW

Up to 150k degrees of freedom

dln(ξ)
 

dln(ξ)
 

K
Vs

GBW
K

ξ
GBW

K
ξ

GBWK
Vs

GSW
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Parallel solver PETSCINV

available   for  download @
https://github.com/auerl/petscinv

1. Symbolic representation 2. Regularization

3. Normal equations 4. Solver



  

(3) Hypothesis test: flat layer

Grid search over layer depth z
0 

 and the anisotropy strength ξ
max
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Again: LPO anisotropy too deep 

Misfit (VR) for 

Pacific dataset:



  

(3) Hypothesis test: √τ case
22/33
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Model:

Grid search over age-slope, 

c, and flattening age, T

Geodynamic LPO model

borderline compatible with data!



  

(3) Hypothesis test: √τ case
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Model:



  

(3) Hypothesis test: √τ case
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Model:



  

(3) Hypothesis test: flat layer

Application to different oceanic regions

Model case Pacific Indian Atlantic Global

depth z
0
 [km] 110 85 80 105

radial anisotropy, ξ
max

1.1 1.09 1.07 1.09

variance reduction, 
VR

 0.860 0.733  0.781 0.854

21/33
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SMEAN (Becker 
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(1) Introduction: Earth's 3D structure

Visualization in the spherical-harmonic domain

● Strong degree 5 in 

the upper mantle 

● Strong degree 2 in 

the lower mantle

● Large model power 

near thermal bound-

ary layers

SMEAN (Becker 

& Boschi, 2000)

3/33
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